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Abstract—It is well known the settling behavior of fine particles in liquid changes at a cer-
tain particle concentration. Particles, which settle independently, coagulate each other and
make a clear interface over a certain concentration. The particle concentration affects the
settling behavior as the gap between particles, which is a very important factor of particle-
particle interaction. In this paper the average particle interval, distance to the closest particle
and contact particle number on a specified particle is discussed geometrically in cases of a
mono-size and multi-size particle system. And the collision free path of multi-size particles
settling under the gravity is also discussed. The calculated results can interpret experimental

results.
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INTRODUCTION

The settling or sedimentation behavior of fine
particles in liquid is strongly influenced of particle
concentration. In dilute suspension particles settle
independently, however, over certain concentration
particle make a clear interface between suspension
and supernatant during sedimentation. It is called
zone settling. The making an interface is mainly con-
trolled by particle size and density, particle interac-
tion and concentration.

The particle interaction including particle size
has been discussed in mainly colloid science field for
a long time and it is now possible to analyze simple
system quantitatively. In spite of that the particle
interaction is a function of the gap between particles,
the discussion about the gap seems to be few so far.

In general the particle distance is estimated from
the cell volume which is calculated from the follow-
ing equation.

volume of particle system
cell volume = P Y

(1
particle number in the system ()

If the cell is supposed as a sphere, the sphere diame-
ter corresponds to the particle distance and if cubic,
the side does. This approach is popular for example
Tsubaki and Tien applied this approach to analyze
granular moving bed filtration process. Suzuki et al.,
discussed this approach for analysis of yielding phe-
nomena of powder bed. The particle distance can be
estimated easily from this approach, however, parti-

cles are separated at the same distance and never
contact each other. This will be a disadvantage to
analyze coagulation or gelation phenomena.

Chandrasekhar proposed the following equation
to calculate the distance to the closest particle from
the specified particle.

Sy dr =[1 - e dr‘]fo(r-') &, @)

where f(r") dr” is the probability that the closest par-
ticle is in the spherical shell between »* and r* + dr’.
The first term of the right side is the probability that
only the specified particle is in the sphere of radius r".
The second term is the probability that the closest
particle is in the sphere of radius r” and calculated
from particle concentration and radial distribution
function. As the radial distribution function is intro-
duced, the particle distance has distribution. The
problem of this approach is that particles can not ex-
ist in the spherical shell between r* = 1/2 and 1. It is
obvious geometrically that particle can not exist in
the shell, however, particle can exist in the shell
mathematically as many as the product of particle
volume fraction and the shell volume.

In this paper it is supposed that particle can exist
in the spherical shell between r” = 1/2 and 1 as parti-
cles contacting on a specified particle. And the dis-
tance to the closest particle and contact particle
number on a specified one is discussed geometrically
in cases of a mono-size and multi-size particle sys-
tem. And the collision free path of multi-size parti-
cles settling under the gravity is also discussed.
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MODELING

In this paper the particle distance and interval are
defined as shown in Fig. 1. The particle distance is
the distance from the center to the center of two par-
ticles. The particle interval is the particle distance
projected on a line, which runs through the particles.
Every valuable having dimension of length is divided
by particle size or the valuable is divided by the me-
dian particle size of a cumulative volume distribution
if particles have size distribution.

O

Fig. 1. Definition of particle distance and interval.

Mono-size particle system

The size of every particle is x and x” = 1.

Farticle interval

The average particle interval can be estimated
from the fact that the length fraction on a line that
runs through a particle system equal to the volume
fraction of the particle system. If the average chord
length @ from a sphere of unit diameter is deter-
mined, the length fraction on a line can be calculated.
The chord length a" at radius r" is the following
equation as shown in Fig. 2.

a" =sinf. 3)

The probability that a radius is between r"and r’ +
dr' is

2n rdr’

—=8r"dr’. 4)
( l J
2

From Egs. (3), (4) the average chord length a s

Fig. 2. A chord from a unit diameter sphere.

a = ,[UzsinQ-Sr' dr . (%)

(1]

Equation (5) can be calculated easily using ro=
(cos®)/2. Finally 4" is

- 2
a ==. (6)
3

The average particle number N on a line of 1 mina
particle system is correlated to the volume fraction ¢
by the following equation.

¢ 2
Z==N. 7
—r (7
And then the average particle interval is given by the
following equation.

ol _2
b= 3 (®)

Distance to the closest particle

Supposing a virtual shell consisted of a virtual
sphere of radius " and a specified particle, the num-
ber m of particles in the shell can be calculated by
the following equation.

4 1 s
2ol lp=m=. 9
311(1 8)¢ m6 (9)

If the radius where m = 1 is defined as the distance to
the closest particle R, R is calculated from the Eq.
(10).

(1 )
| - 10
R, 2[¢+1] (10)

For comparison the distance to the closest particle of
regular packing structures is calculated by the fol-
lowing equations. In case of cubic system the dis-
tance to the closest particle R, is
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1/3
R;,,,:[G—T;J . (11)

In case of body centered cubic system the distance to
the closest particle R, is half of the diagonal length
of the unit cubic in [111] direction.

1/3
R,Z“=J§[EJ . (12)

23

In case of face centered cubic system the distance to
the closest particle Ry, is half of the diagonal length
of the unit cubic in [110] direction.

V3
I (2=
Ri.=—|=—1| .
& \/5(3@} 15

Number of particles contacting on a specified particle

Supposing a virtual shell consisted of a specified
particle and a sphere of " = | as shown Fig. 3. And
the number M, of first layer particles contacting on
the specified particle can be presumed to be the par-
ticle number existing in the virtual shell. Substituting
r =1 into Eq. (9),

M, =7¢ (14)

The number M, of the second layer particles con-
tacting on the first layer particles is also calculated
by the same way. Supposing a virtual shell con-
sisted of a sphere of radius 1 and a first layer particle,
the number A of particles in the virtual shell could
be calculated. Since the volume of the cross part
formed by the two virtual shells in Fig. 3 is already
considered for the first layer particle, the cross part

virtual shell for
2nd particle

1st particle
2nd particle

virtual shell for
1st particle

Fig. 3. Virtual spheres containing contact particles.

volume should be subtracted for considering the
second layer particles. In general the volume of a
spherical crown of radius r is

L3
pu S BN ~ I (rsin@)*rcosd, (15)
4 3 3

where s is the surface area of the crown, and
a
s=L 2nrsin@-rd@ =2n r*(1-cosd) . (16)

Substituting Eq. (16) into Eq. (15),

3

v:%{Z(l—cosg)—sinZBCosé’}_ (17)
Substituting » = 1, 8 = n/3 into Eq. (17), the space
volume F; existing the second layer particles is

V3=ETE—2V=ETE. (18)

3 4

If the interaction between contacted particles can be
neglected M, is given by the following equation.

g 105

M}_:Ml =
n/6 2

¢ (19)

Multi-size particle system

Particle interval

The average chord length a from a sphere of di-
ameter x is

2
a==x. (20)
a 31

The number dN,, of spheres of diameter x on a | m
line in a particle system is determined by the follow-
ing equation.

¢-q(x)dv=a-dN,. (21)
The average particle interval is given by Eq. (22).

LI S S (22)

N, 3¢ I‘“ 0(X) 4,
0 X

Equation (22) is divided by x3 50 for reducing length
dimension.
JR S — (23)
3 r=q:(x )d.r_
[ =

) X
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Distance to the closest particle

Supposing a virtual shell in which one particle
exists, the radius R. is determined by Eq. (24) like
the case of mono-size particle system.

dn[ o d” ) prq() e .
T[R( —?] IU n—.}d.r =1. (24)

—X

The definite integral in Eq. (24) is the particle num-
ber in unit volume.

|-

.1 1 3
o N n— N (25)
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-

The average value of R’ is
R =["Rig,(d)dd", (26)

where go(x) is a particle number density distribution.

Number of particles contacting on a specified particle

The contact number dM,, of particle X on a
specified particle D is given by Eq. (27).

e ray -d g e -2 M,

(27)

The total number of particles contacting on a speci-
fied particle D is

(" +d" ) —d” .
M, = ¢L w— gy(x") dx”. (28)
X
The average contact number A?,,,, is
My = | Mugo(d)dd". (29)

Collision free path

In multi-size particle system collision of parti-
cles due to the difference of settling velocity influ-
ences coagulation phenomena as much as particle
distance. It is supposed that a specified particle D
collides to particle X. The particle diameters and set-
tling velocities are d, x and wuy, u,, respectively. It is
assumed that the settling velocity of particle X is
zero and a specified particle D collides to particle X
with velocity |uy — 1. If a particle X exists in a cyl-
inder of diameter d + x of which center is the center
of the particle D, the particle D can collide to the
particle X. The height of the cylinder is |us — u,¢,
therefore the dimensions of the cylinder are depend

on particle size x. The number dm of particle X ex-
isting in the cylinder in sedimentation time ¢ is de-
termined by the following equation.

¢ g;(x) dx
—_———t

3
a0,

P

dm =|u, —u, ltg(d +x)? (30)

The collision time ¢, is determined as the time when
the particle number becomes 1 in the cylinders.

3(d + x)’

1 o
J’U dm=¢ er'U = | =55 () de (31)

The collision free path z of particle D is given by
Z=uyt,. (32)

The particle settling velocity is expressed by the fol-
lowing Richardson-Zaki’s equation.

(p,—pr)g(l-9) 2
18 T

(33)

U, =

Combining Egs. (31), (32), and (33), the collision
free path z of a particle having size d is

24°
-x|(x+d)’
.'L'3

z= 4
),

; (34)
gs(x) dx

Consequently, the average collision free path in a
multi-size particle system is calculated by the fol-
lowing equation.

= j’n Zg,(d")dd" . (35)

CALCULATION AND DISCUSSION

Mono-size particle system

Particle interval and distance to the closest particle

The particle interval and the distances to the
closest particle calculated by Eq. (8) and Eqgs. (10) -
(13) respectively are shown in Fig. 4. The particle
interval decreases keenly in the region of low con-
centration. In regular packing the distances to the
closest particle are similar and always greater than I.
On the contrary, in this model the distance to the
closest particle is shorter than those of regular pack-
ing and can be smaller than 1. That the distance to
the closest particle is smaller than particle size means
one or more particles contact on a specified particle
in this model.
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Fig. 4. Particle interval and distance to the closest par-
ticle in a mono-size particle system.

Number of particles contacting on a specified particle

The number of the first and second layer parti-
cles is calculated from Egs. (14), (19) and the results
are shown in Fig. 5 with the sum of them. If the av-
erage coordination number of a particle is bigger
than 2, particles could make a three dimensional
network structure. Figure 5 suggests that suspension
have a possibility to make a network structure if the
volume concentration exceeds about 10%.

Tsubaki et al. (1998), dispersing 0.48 pm alpha-
alumina powder in aqueous solution of polyacrylic
ammonium, measured the packing fraction of sedi-
ment settled in a centrifugal field by changing sus-
pension concentration. The suspension of 5 vol% did
not make a clear supernatant zone, on the contrary
the 10 vol% suspension made a clear interface be-
tween supernatant and suspension. Making a network
structure is determined by not only geometrical fac-
tor but also other factors, such as inter-particle inter-
action and particle collision due to settling velocity
difference, however, this model could be strong tool
to analyze coagulation phenomena.
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Fig. 5. Number of particles contacting on a specified
particle in a mono-size particle system.

Multi-size particle system

A logarithmic normal distribution is supposed as
the particle size distribution of a multi-size particle
system. If a particle size is normalized by the median
particle size of a cumulative volume distribution x; 5,
the distribution function is

In® x*

| n-x
Inx") = exp| — : 36
% ) V2nlno, p{ 2In2c}'gJ 36)

The calculation parameter is geometric standard de-
viation o.

Particle interval

The particle interval and number on a 1 m-length
line are calculated by Egs. (21), (23) and shown in
Fig. 6. The particle number increases and the particle
interval decreases with .

Supposing | m’ mono-size particle system of
which particle size, volume concentration and parti-
cle number are x3 50, ¢, and ng respectively, the parti-
cle number ratio n/n, is given by

LI medlnx'. (37)
Ny {

o3
-

The particle number density distribution is deter-
mined by

—q"(h}f ) dlnx’

e . (38)
JML( n].\ ) dinx’
0 '\.‘

f]l)(-"') =

The particle number distribution 7 go(x")/ng is shown
in Fig. 7.
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Fig. 6. Particle interval and number on a unit length
line in a multi-size particle system.
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Fig. 7. Particle number distribution.

As shown Fig. 7 smaller particles increase with
o, extremely. The increase of smaller particles de-
creases the particle interval and increases the particle
number in Fig. 6.

Distance to the closest particle

The average distance to the closest particle is
decreases with o, as shown Fig. 8(a). However, if the
distance is reduced by xpso, the distance increases
with o, because of the decreasing of xg 5o as shown in
Fig. 8(b). As the most particles are near xg 50 in multi-
size particle system, particles are relatively dispersed
with o.

Number of particles contacting on a specified particle

In case of g, = 2.0 the number of contacting par-
ticles on a specified particle M, is calculated by Eq.
(28) as shown Fig. 9. The value of M, increases
exponentially with specified particle diameter d,
however, the number of particles bigger than 0.5 is
negligible small as shown Fig. 9. From this reason
the average contact number M, decreases with lopt
as shown Fig. 10.

It can be said from Fig. 8(b) and Fig. 10 that par-
ticles are more dispersed and few contacting to the
other particles in a multi-size particle system having
a wider distribution.

Collision free path

The collision free path z ofa specified particle
having diameter ¢ was calculated by Eq. (34) and
the examples are shown in Fig. 11. As o increases,
z" decreases and the peaks of the z* distributions sift
to fine size in Fig. 11. The average collision free path
z in a multi-size particle system calculated by Eq.
(35) is shown in Fig. 12. The value of ' decreases
keenly and then semi-logarithmically with o.

(a) 5 ~——r—r———

Fig. 8. (a) Average distance to the closest particle in a
multi-size particle system; (b) average distance
to the closest particle in a multi-size particle
system (particle size is reduced by xg sq).
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Fig. 9. Number of particles contacting on a specified
particle of diameter d in a mono-size particle
system.
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Fig. 10. Average contact number on a particle in a multi-
size particle system.
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Fig. 11. Collision free path of a specified particle of
diameter  in a mono-size particle system.
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Fig. 12. Average collision free path of a particle in a multi-
size particle system.

Figure 12 shows that particles having size dis-
tribution colloids in a short distance. As mentioned
above, increasing of o, acts on coagulation of parti-
cles negative geometrically, however it promotes
coagulation due to particle collision.

CONCLUSION

In this paper the average particle interval, dis-
tance to the closest particle and contact particle
number on a specified one were calculated geomet-
rically in cases of mono-size and multi-size particles.
From the calculation and discussion it was clarified
how the particle concentration and size distribution
affect particle coagulation as the following.

In mono-size particle system particles have pos-
sibility to make a network structure over about 10
vol% because the particle contact number (coordina-
tion number) can be bigger than 2.

Although wide size distributions having the same
volume mean diameter make particles dispersed
geometrically and act on coagulation negative, the
particle collision frequency during sedimentation
increase with the width of size distribution and pro-
mote coagulation.

NOMENCLATURE
a chord length, m
d size of a specified particle, m
fr) existing probability density of the near-

est particle, m

fo(r) particle existing probability density, m™

g gravitational acceleration, m - s~

k constant

L particle interval on a line in mono-size
particle system, m

M, number of first layer particles contact-
ing on a specified particle

M, number of second layer particles on a
specified particle

m particle number in a virtual sphere
particle number on a line of I m, m™'

n particle number in | m® multi-size par-
ticle system, m™

ng particle number in 1 m’ mono-size par-
ticle system, m™

go(x) particle number density distribution,
m™

qi(x) particle volume density distribution, m™'

Riee R. of bee structure, m

R distance to the closest particle, m

Reup R, of cubic structure, m
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Rpe R, of fce structure, m

r radius, m

s surface area of a spherical crown, m*

i collision time, s

Uy settling velocity of a specified particle,
m-s’'

Uy settling velocity of a particle, m + s~

Va vo}lume existing second layer particles,
m

v volume of a spherical crown, m®

X particle size, m

X0,50 median particle size of a cumulative
number distribution, m

X350 median particle size of a cumulative
volume distribution, m

Z average collision free path in a multi-
size particle system, m

z collision free path of a specified particle,
m

Greek symbols

e angle

7 liquid viscosity, Pa - s

or liquid density, kg - m™

P particle density, kg - m™

Oy geometric standard deviation of particle

size distribution

¢ particle volume fraction
Superscripts
*

reduced length by x3 59
- average value

Subscript

m multi-size particle system
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